Violympic toán 8

BB

Cho \(\dfrac{2a+b}{a+b}+\dfrac{2c+d}{c+d}+\dfrac{2b+c}{b+c}+\dfrac{2d+a}{d+a}=6\). CM: A= abcd là số chính phương

HN
7 tháng 3 2021 lúc 22:01

Ta có:

\(\dfrac{2a+b}{a+b}+\dfrac{2c+d}{c+d}+\dfrac{2b+c}{b+c}+\dfrac{2d+a}{d+a}=6\)

⇔ \(\left(\dfrac{2a+b}{a+b}-1\right)+\left(\dfrac{2c+d}{c+d}-1\right)+\left(\dfrac{2b+c}{b+c}-1\right)+\left(\dfrac{2d+a}{d+a}-1\right)=2\)

⇔ \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

⇔ \(\left(1-\dfrac{a}{a+b}\right)-\dfrac{b}{b+c}+\left(1-\dfrac{c}{c+d}\right)-\dfrac{d}{d+a}=0\)

⇔ \(\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

⇔ \(\dfrac{b\left(b+c\right)-b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(d+a\right)-d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}=0\)

⇔ \(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

⇔ \(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}-\dfrac{d\left(c-a\right)}{\left(c+d\right)\left(d+a\right)}=0\)

⇔ \(\left(c-a\right)\left(\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right)=0\)

⇒ \(\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}=0\)         \(\left(a\ne c\right)\)

⇒ \(b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)

⇔ \(\left(bc+bd\right)\left(d+a\right)-\left(ad+bd\right)\left(b+c\right)=0\)

⇔ \(bcd+abc+bd^2+abd-abd-acd-b^2d-bcd=0\)

⇔ \(abc+bd^2-acd-b^2d=0\)

⇔ \(ac\left(b-d\right)-bd\left(b-d\right)=0\)

⇔ \(\left(b-d\right)\left(ac-bd\right)=0\)

⇒ \(ac-bd=0\)       \(\left(b\ne d\right)\)

⇔ \(ac=bd\)

Khi đó:

\(A=abcd=\left(ac\right)^2\)

⇒ \(ĐPCM\)

 

 

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
WY
Xem chi tiết
BT
Xem chi tiết
NH
Xem chi tiết
MB
Xem chi tiết
ND
Xem chi tiết
BB
Xem chi tiết
TS
Xem chi tiết
VT
Xem chi tiết