Violympic toán 8

MB

1/ Cho a,b,c,d >0 Tìm GTNN

\(A=\dfrac{a}{2b+9c+1945d}+\dfrac{b}{2c+9d+1945a}+\dfrac{c}{2d+9a+1945b}+\dfrac{d}{2a+9b+1945c}\)

2/Cho a;b;c>0 Tm a+b+c=1 Tìm GTNN

\(B=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)

Giups đc bài nào giúp nha! Thanks

TH
28 tháng 5 2018 lúc 15:08

2,

ÁP dụng bđt phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(Tự cm) ta có

\(B\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ac\right)}+\dfrac{7}{ab+bc+ac}\)

Tiếp tục sử dụng bđt \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow B\ge\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}=9+\dfrac{7}{ab+bc+ac}\)

SD bđt phụ \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow ab+bc+ac\le\dfrac{1}{3}\)

\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)

Do đo \(B\ge21+9=30\)

Dấu bằng xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)
TH
28 tháng 5 2018 lúc 15:11

Bài 1 SD cái bđt \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}+\dfrac{d^2}{t}\ge\dfrac{\left(a+b+c+d\right)^2}{x+y+z+t}\)

Phương pháp : nhân các phân thức lần lượt vs tử của nó để xuất hiện bình phương biến đổi mẫu sao cho xuất hiện a +b+c+d .

Ngại trình bày vì dài quá

Bình luận (0)
MB
18 tháng 5 2018 lúc 20:58

Có ai làm đc bài nào ko

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
ND
Xem chi tiết
LS
Xem chi tiết
TD
Xem chi tiết
LT
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết