Violympic toán 8

H24

Cho \(\Delta\)ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD. 

a) Tính AD

b)Gọi I là giao điểm của BD và AH. Chứng minh:\(\Delta\)AID cân

c) Qua I kẻ đường thẳng song song với AC cắt BC tại K.Chứng minh:\(\dfrac{HK}{KC}\)=\(\dfrac{HB}{AB}\)

d)Gọi E là giao điểm của AK và I,F là trung điểm của AC.Chứng minh:H,E,F thẳng hàng

NT
3 tháng 4 2021 lúc 21:13

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AD}{6}=\dfrac{1}{2}\)

hay AD=3(cm)

Vậy: AD=3cm

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
LP
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
NN
Xem chi tiết
VL
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết