Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 8

DS

Cho \(\Delta ABC\) có ba cạnh tương ứng là a; b; c

thỏa mãn \(a^3+b^3+c^3=3abc\) Hỏi \(\Delta ABC\) là tam giác gì

NS
9 tháng 3 2019 lúc 16:11

Tam giác đều, cần cm ko ?

Bình luận (0)
NL
9 tháng 3 2019 lúc 17:21

Đẳng thức quen thuộc: \(a^3+b^3+c^3=3abc\Rightarrow\left[{}\begin{matrix}a=b=c\\a+b+c=0\end{matrix}\right.\)

Do \(a;b;c\) là 3 cạnh của tam giác nên \(a;b;c>0\Rightarrow a+b+c>0\)

Ta có:

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\) (do a+b+c>0)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Vậy ABC là tam giác đều

Bình luận (0)
DS
9 tháng 3 2019 lúc 15:31

@Annie Scarlet

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
LC
Xem chi tiết
KH
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
HN
Xem chi tiết