Xét tính bị chặn của các dãy số sau:
a) \(u_n=\left(-1\right)^n.cos\left(\dfrac{\pi}{2n}\right)\)
b) \(t_n=\dfrac{\sqrt{2}}{5^n}\)
Cho dãy số thực (un) xác định bởi \(\left\{{}\begin{matrix}u_1=2019\\u^2_n+2018u_n-2020u_{n+1}+1=0\left(n\in N\cdot\right)\end{matrix}\right.\). Tìm giới hạn của dãy số (Sn), biết: Sn = \(\dfrac{1}{u_1+2019}+\dfrac{1}{u_2+2019}+...+\dfrac{1}{u_n+2019}\)
Cho dãy số (un), biết u1= 2, un+1= \(\dfrac{2017+u_n}{2019-u_n},n\ge1\) . Xác định công thức số hạng tổng quát un và tìm limun
Chứng minh rằng dãy số sau đây tăng và bị chặn trên :
\(x_1=\dfrac{1}{5+1};x_2=\dfrac{1}{5+1}+\dfrac{1}{5^2+1};x_3=\dfrac{1}{5+1}+\dfrac{1}{5^2+1}+\dfrac{1}{5^3+1},.....;x_n=\dfrac{1}{5+1}+\dfrac{1}{5^2+1}+.....+\dfrac{1}{5^n+1}\)
Cho dãy số (un) được xác định như sau: u1= 2017; un-1= n2(un-1 - un) với mọi n ∈ N*, n ≥2. Tìm giới hạn dãy số (un)
Cho dãy số \(\left(u_n\right)\) với \(u_n=\left(-1\right)^n\left(-3\right)^{n+1}\)
a) Xét tính tăng, giảm của dãy số
b) Chứng minh rằng dãy số trên là cấp số nhân
c) Hỏi phải lấy tổng của bao nhiêu số hạng đầu của dãy số để được kết quả là : -265716
Xét tính bị chặn của các dãy số với số hạng tổng quát sau :
a) \(x_n=\dfrac{5n^2}{n^2+3}\)
b) \(y_n=\left(-1\right)^n\dfrac{2n}{n+1}\sin n\)
c) \(z_n=n\cos n\pi\)
Cho dãy số (un) xác định như sau: u1= 2; un+1 - un - 2 + 2(4un+1 - \(\sqrt{4u_n+1}\)) = 0, ∀n∈ N*. Tìm số hạng tổng quát un của dãy số trên
Cho dãy (Un) xác định: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{\left(2u_n+1\right)^{2022}}{2022}+u_n\end{matrix}\right.\). Đặt: \(x_n=\dfrac{\left(2u_1+1\right)^{2021}}{2u_2+1}+\dfrac{\left(2u_2+1\right)^{2021}}{2u_3+1}+...+\dfrac{\left(2u_n+1\right)^{2021}}{2u_{n+1}+1}\). Tính lim \(x_n\)