Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho tam giác ABC nội tiếp (O), H là trực tâm, AH cắt (O) tại E. Kẻ đường kính AOF. Chứng minh:
a) Tứ giác BCEF là hình thang cân
b) \(\widehat{BAE}=\widehat{CAF}\)
c) Gọi I là trung điểm của BC. Chứng minh: H, I, F thẳng hàng
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho (O;R) và dây AB. Các tiếp tuyến tại A và B, của (O) cắt nhau tại C. a) C/m: Tứ giác ACBO nội tiếp. b) Lấy điểm I trên đoạn AB ( IB < IA). Từ điểm I kẻ đường thẳng vuông góc với OI cắt AC tại E và cắt đường thẳng BC tại D. C/m: góc IBO = góc IDO. c) C/m: OE = OD. d) C/m: Cho góc AOB = 120°. Tính độ dài đoạn thẳng OE khi OI = 2R/3
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)
Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF
Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF
Cho tam giác ABC nhọn nội tiếp đường tròn (O) đường kính AD. Tiếp tuyến tại D cắt đường thẳng BC tại P, đường thẳng PO cắt đường thẳng AC tại M và cắt đường thẳng AB tại N. Gọi I là trung điểm của đoạn thẳng BC. Qua C vẽ đường thẳng song song với đường thẳng MN cắt đường thẳng AD tại E và cắt đường thẳng AB tại Q. Chứng minh rằng: a) Bốn điểm P, O, I, D cùng nằm trên một đường tròn. b) EIP = EDC . c) O là trung điểm của đoạn thẳng MN