AB<AC nên HB<HC
còn chưa thể đủ dữ kiện để so sánh AH với BH và CHđược nha bạn
AB<AC nên HB<HC
còn chưa thể đủ dữ kiện để so sánh AH với BH và CHđược nha bạn
Cho tam giác ABC cân tại A. Biết AC=5cm, BC=6cm. Kẻ AH vuông góc với BC tại H a) CMR: Tam giác ABH=tam giác ACH. b) Tính độ dài đoạn thẳng AH c) Từ H kẻ đường thẳng song song với AC, cắt AB tại M. CMR: M là trung điểm của AB
cho ΔABC vuông tại A . Đường phân giác BD (D ∈ AC). Kẻ DE ⊥ BC (E ∈ BC)
a) Chứng minh ΔABD = ΔEBD
b) Chứng minh ΔADE cân và BD là trung trực của AE
c) So sánh AD và DC
d) Kẻ AH vuông góc với BC (H ∈ BC), AH cắt BD tại F. Chứng minh: AH // DE và ΔAFD cân
e) Chứng minh AE là tia phân giác của góc AHC
Cho tam giác ABC vuông tại A có AB=9cm, AC:12cm a, Tính độ dài cạnh BC và so sánh các góc của tam giác ABC b, Tia phân giác của học ABC cách AC tại D. Vẽ DH vuông góc BC(H thuộc BC). Chứng minh AD=HD c, Gọi E là giao điểm của 2 đường thẳng AH và BA. Kéo dài BD cách EC tại I. CM: BI=EC
bài 1: cho ABC vuông tại A có AB<AC. Kể AH song song BC(HE,BC) cho biết AH=12 cm,BH=9 cm,AC=20 cm.Tính độ dài AB và HC
Cho tam giác ABC vuông tại A. Kẻ đường cao AH cắt BC tại H, biết AB=20cm, AC=25cm, AH=16cm. Tính độ dài BC và Chu vì tam giác ABC
Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H BC)
a) Chứng minh : HB = HC và =
b)Tính độ dài AH ?
c)Kẻ HD vuông góc AB ( DAB), kẻ HE vuông góc với AC(EAC). Chứng minh : DE//BC
Làm hộ iem câu c ;-;
Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH ⏊BC (H thuộc BC). Gọi K là
giao điểm của AB và HE. Chứng minh rằng:
a) ΔABE = ΔHBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC
d) AE < EC
Cho tam giác cân ABC có AB = AC =5cm , BC = 8cm . Kẻ AH vuông góc với BC ( H ∈ BC )
a, chứng minh : HB = HC và ∠CAH = ∠BAH
b, tính độ dài AH
c, kẻ HD vuông góc AB ( D ∈ AB ) , kẻ HE vuông góc với AC ( E ∈ AC )
chứng minh DE //BC