Bài 2. Cho D ABC cân tại A. Phân giác AM (M Î BC), Vẽ BH ^ AC (H Î AC), CK ^ AB (K Î AB).
a. Chứng minh rằng D AMB = D AMC.
b. Chứng minh rằng BH = CK.
Bài 3. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:
a) AE = BD;
b) AF // BC.
c) Ba điểm A, E, F thẳng hàng.
Bài 4. Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Tia phân giác của góc HAB cắt BC tại E, tia phân giác của góc HAC cắt BC tại D. Chứng minh rằng AB+AC=BC+DE.
cho ΔABC vuông tại A . Đường phân giác BD (D ∈ AC). Kẻ DE ⊥ BC (E ∈ BC)
a) Chứng minh ΔABD = ΔEBD
b) Chứng minh ΔADE cân và BD là trung trực của AE
c) So sánh AD và DC
d) Kẻ AH vuông góc với BC (H ∈ BC), AH cắt BD tại F. Chứng minh: AH // DE và ΔAFD cân
e) Chứng minh AE là tia phân giác của góc AHC
Bài 5. Cho tam giác ABC vuông tại A( AB > AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD= MA
a) Cho AB= 8cm, BC= 10cm. Tính AC?
b) Chứng minh DAMB = D DMC, từ đó suy ra CD ^ AC
c) Vẽ AH vuông góc với BC tại H, trên tia đối của HA lấy E sao cho HE = HA. Chứng minh: DACE cân
d)Chứng minh BD = CE.
Cho tam giác ABC có A < 90 độ và AB < BC. Gọi M là trung điểm của AC, trên tia đối của tia MBlấy điểm D sao cho MD = MB.1) Chứng minh ΔABM = ΔCDM từ đó chứng minh AB=CD và AB // DC.2) Chứng minh : ABC = ADC.3) Kẻ AH ⊥ BD tại H, CK ⊥ BD tại K. Chứng minh AK = CH.4) Nếu AC = 2AB = 8 cm và BAC = 60 độ . Tính HK.
Ai giúp tớ câu 3,4 với!
Cho tam giác ABC có A < 90 độ và AB < BC. Gọi M là trung điểm của AC, trên tia đối của tia MBlấy điểm D sao cho MD = MB.1) Chứng minh ΔABM = ΔCDM từ đó chứng minh AB=CD và AB // DC.2) Chứng minh : ABC = ADC.3) Kẻ AH ⊥ BD tại H, CK ⊥ BD tại K. Chứng minh AK = CH.4) Nếu AC = 2AB = 8 cm và BAC = 60 độ . Tính HK.