Chương IV : Biểu thức đại số

QD

Cho đa thức:

\(Q\left(x\right)x.\left(\frac{x^2}{2}-\frac{1}{2}+\frac{1}{2}x\right)-\left(\frac{x}{3}-\frac{1}{2}x^4+x^2-\frac{x}{3}\right)\)

a) Tìm bậc của đa thức Q(x)

b) Tính Q(\(-\frac{1}{2}\))

c) Chứng minh rằng đa thức Q(x) nhận giá trị nguyên với mọi số nguyên x.

NT
28 tháng 7 2020 lúc 11:50

a) Ta có: \(Q\left(x\right)=x\cdot\left(\frac{x^2}{2}-\frac{1}{2}+\frac{1}{2}x\right)-\left(\frac{x}{3}-\frac{1}{2}x^4+x^2-\frac{x}{3}\right)\)

\(=\frac{x^3}{2}-\frac{x}{2}+\frac{1}{2}x^2-\frac{x}{3}+\frac{1}{2}x^4-x^2+\frac{x}{3}\)

\(=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\)

b) Thay \(x=-\frac{1}{2}\) vào biểu thức \(Q\left(x\right)=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\), ta được:

\(Q\left(-\frac{1}{2}\right)=\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^4+\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^3-\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^2-\frac{1}{2}\cdot\frac{-1}{2}\)

\(=\frac{1}{2}\cdot\frac{1}{16}-\frac{1}{2}\cdot\frac{1}{8}-\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{4}\)

\(=\frac{1}{32}-\frac{1}{16}-\frac{1}{8}+\frac{1}{4}\)

\(=\frac{3}{32}\)

Vậy: \(Q\left(-\frac{1}{2}\right)=\frac{3}{32}\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
LT
Xem chi tiết
DM
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
PA
Xem chi tiết
TV
Xem chi tiết
PA
Xem chi tiết
TV
Xem chi tiết