Hình học lớp 7

HT

Cho Δ ABC vuông tại A. Gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MD=MB.

a) CM : AD = BC

b) CM : CD vuông góc với AC

c) Đường thẳng qua B // với AC cắt tia DC tại N. CM: Δ ABM= Δ CNM

Giúp mình với ạ!!

SG
21 tháng 12 2016 lúc 11:17

a) Xét t/g AMD và t/g CMB có:

AM = MC (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c)

=> AD = BC (2 cạnh tương ứng) (đpcm)

b) Xét t/g BMA và t/g DMC có:

MB = MD (gt)

BMA = DMC ( đối đỉnh)

MA = MC (gt)

Do đó, t/g BMA = t/g DMC (c.g.c)

=> ABM = CDM (2 góc tương ứng)

Mà ABM và CDM là 2 góc ở vị trí so le trong nên AB // CD

Mà AB _|_ AC (gt) => AC _|_ CD hay AC _|_ DN

Có: BN // AC (gt)

AB // CN (cmt)

=> AB = CN ( tính chất đoạn chắn)

Xét t/g ABM vuông tại A và t/g CNM vuông tại C có:

AB = CN (cmt)

AM = CM (gt)

Do đó, t/g ABM = t/g CNM (2 cạnh góc vuông) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
VA
Xem chi tiết