Hình học lớp 7

NH

Cho Δ ABC. Vẽ AH vuông góc với BC tại H, trên tia đối của tia AH lấy điểm D sao cho AH = HD.

a) Chứng minh: Δ ABH = Δ DBH.

b) Chứng minh: BC là phân giác của góc ABD

c) Chứng minh: Góc BAC = Góc BOC

d) Gọi M là trung điểm của AB. Qua M vẽ đường thẳng song song AH và cắt BD tại N.

Chứng minh: N là trung điểm của BD

TH
24 tháng 11 2016 lúc 10:40

Ta có hình vẽ:

A B C D H M N

a/ Xét tam giác ABH và tam giác DBH có:

BH: cạnh chung

\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

b/ Ta có: tam giác ABH = tam giác DBH (câu a)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)

=> \(\widehat{ABC}\)=\(\widehat{DBC}\)

=> BC là phân giác của góc ABD (đpcm)

c/ Xét tam giác ABC và tam giác DBC có:

BC: cạnh chung

\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)

AB = DB (vì tam giác ABH = tam giác DBH)

=> tam giác ABC = tam giác DBC (c.g.c)

=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)

d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)

Mà BM = AM

=> BN = DN

\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
VA
Xem chi tiết
PT
Xem chi tiết
LH
Xem chi tiết
PT
Xem chi tiết
NL
Xem chi tiết
HL
Xem chi tiết