Hình học lớp 7

VA

cho Δ ABC ,vẽ AH vuông góc BC (Hϵ BC) , trên tia đối AH lấy diểm D (AH=HD). Chứng minh :

a, Δ ABH = Δ DBH

b, AC=CD

c, Qua A kẻ đường thẳng song song với BD cắt BC tại E. chứng minh H là trung điểm của BE

TL
18 tháng 12 2016 lúc 12:33

A B C D H E

a) Xét ΔABH vÀ ΔDBH có:

BH:cạnh chung

\(\widehat{AHB}=\widehat{DHB}=90^o\)

AH=DH(gt)

=> ΔABH=ΔDBH(c.g.c)

b)Xét ΔAHC và ΔDHC có:

AH=DH(gt)

\(\widehat{AHC}=\widehat{DHC}=90^o\)

HC: cạnh chung

=> ΔAHC=ΔDHC(c.g.c)

=> AC=CD

c) Xét ΔBHD và ΔEHA có:

\(\widehat{BHD}=\widehat{EHA}=90^o\)

DH=AH(gt)

\(\widehat{BDH}=\widehat{EAH}\) ( sole trong do AE//BD)

=> ΔBHD=ΔEHA(g.c.g)

=> BH=EH

=>H là trung điểm của BE

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
LH
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết