Violympic toán 9

NP

Cho Δ ABC cân ,AB=AC=9cm, BC=12cm, đường cao AH , I là hình chiếu của H trên AC
a, Tính CI
b, Kẻ đường cao BK của Δ ABC . chứng minh K nằm giữa A và C
nhờ giúp mk với

H24
9 tháng 11 2019 lúc 20:39

A B H I K

Xét △ABC cân ở A có AH là đường cao

⇒AH là đường trung tuyến

⇒H là trung điểm của BC

⇒HB=HC=\(\frac{1}{2}\)BC=\(\frac{1}{2}.12=6\)(cm)

ADHT về cạnh và đường cao vào △AHC vuông ở C đường cao HI có

HC2=CI.AC

⇒62=CI.9

⇒CI=4(cm)

Vậy CI=4cm

AD tỉ số lượng giác vào △AHC vuông tại C có

sinHAC=\(\frac{HC}{AC}=\frac{6}{9}\)

\(\widehat{HAC}\approx42^o\)

Mà △ABC cân ở A có AH là đường cao

⇒AH là phân giác của \(\widehat{A}\)

\(2\widehat{HAC}=\widehat{A}\)

\(\widehat{A}\)=84o

AD tỉ số lượng giác vào △ABK vuông ở K có

AK=AB.cosA

=9.cos 84o

\(\approx\)1(cm)

Ta có △ABC cân ở A

\(\widehat{C}\)=\(\frac{180^o-84^o}{2}\)=48o

AD tỉ số lượng giác vào △BCK vuông ở K có

KC=BC.cosC

=12.cosC

\(\approx\)8(cm)

Ta có AK là đường cao của △ABC

⇒K∈AC

Lại có AK+KC=1+8=9=AC

⇒K nằm giữa A và C

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 11 2019 lúc 20:39

bổ sung điểm C zô hình nha!!!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
NT
Xem chi tiết
KN
Xem chi tiết
KB
Xem chi tiết
PT
Xem chi tiết