Cho dãy số (un) thỏa mãn u1 = \(\dfrac{2}{3}\) và un+1 = \(\dfrac{u_n}{2\left(2n+1\right)u_n+1}\left(n\ge1\right)\). Tìm số hạng tổng quát un của dãy. Tính lim un
Tính giới hạn của các dãy số có số hạng tổng quát sau đây, khi \(n\rightarrow+\infty\)
a) \(a_n=\dfrac{2n-3n^3+1}{n^3+n^2}\)
b) \(b_n=\dfrac{3n^3-5n+1}{n^2+4}\)
c) \(c_n=\dfrac{2n\sqrt{n}}{n^2+2n-1}\)
d) \(d_n=\dfrac{\left(2-3n\right)^3\left(n+1\right)^2}{1-4n^5}\)
e) \(u_n=2^n+\dfrac{1}{n}\)
f) \(v_n=\left(-\dfrac{\sqrt{2}}{\pi}\right)^n+\dfrac{3^n}{4^n}\)
g) \(u_n=\dfrac{3^n-4^n+1}{2.4^n+2^n}\)
h) \(v_n=\dfrac{\sqrt{n^2+n-1}-\sqrt{4n^2-2}}{n+3}\)
Cho dãy số (\(u_n\)) xác định bởi: \(\left\{{}\begin{matrix}0< u_n< 1\\u_n\left(1-u_{n+1}\right)>\dfrac{1}{4},\forall n\ge1\end{matrix}\right.\)
Chứng minh dãy số (\(u_n\)) có giới hạn hữu hạn khi \(n\rightarrow\infty\)
cho dãy số (un) có số hạng \(u_n=\dfrac{2^n+5^n}{5^n}+\dfrac{3^n+8^n}{3^n}\). tính \(lim\left(u_n\right)\)
Cho dãy số \(u_n\)xác định\(\left\{{}\begin{matrix}u_1=4\\u_{n+1}=\dfrac{3nu_n}{n+1}-\dfrac{2n^2+6n+3}{n^2\left(n+1\right)^3}\end{matrix}\right.\) với ∀n\(\ge\)1
Xác định công thức tổng quát của u\(_n\) theo n và tính lim (\(\dfrac{nu_n}{4}\))
GIÚP MÌNH VỚI ,AI LÀM XONG TRƯỚC SẼ ĐƯỢC TICK NHIỀU
Biết \(\left|u_n-2\right|\le\dfrac{1}{3^n}\). Có kết luận gì về giới hạn của dãy số \(\left(u_n\right)\) ?
Cho dãy số thực \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1\\u_n=\dfrac{-1}{3+u_{n-1}},\forall n\ge2\end{matrix}\right.\)
Chứng minh rằng dãy số có giới han hữu hạn khi \(n\rightarrow+\infty\)
Cho dãy số \(\left(u_n\right)\) thỏa mãn\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{2}{3}u_n+4,\forall n\in N,n\ge1\end{matrix}\right.\)
Tìm \(\lim\limits u_n\)
Cho số thực a khác 0 và dãy số \(\left(u_n\right)_{\left(n\ge1\right)}\) xác định bởi \(\left\{{}\begin{matrix}u_1=a\\2u_{n+1}=u_n+\dfrac{4\left(n+1\right)}{nu_n}\end{matrix}\right.\)
Tìm lim \(u_n\)