Ôn tập cuối năm phần số học

H24

cho các số x, y, z thỏa mãn x+y+z=\(\dfrac{3}{2}\) . chứng minh rằng x^2+y^2+z^2≥\(\dfrac{3}{4}\)

ND
9 tháng 5 2018 lúc 19:59

Áp dụng BĐT Bunhyaxcopki, ta có:

\(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(\dfrac{3}{2}\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\dfrac{9}{4}\)

\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{3}{4}\)

Bình luận (6)
PD
9 tháng 5 2018 lúc 20:03

ủng hộ cách khác không xài bđt bunhia:

\(x^2+y^2+z^2\ge\dfrac{3}{4}\)

\(\Leftrightarrow x^2+y^2+z^2-x-y-z\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)

\(\Leftrightarrow x^2+y^2+z^2-x-y-z+\dfrac{3}{4}\ge0\)

\(\Leftrightarrow\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2-y+\dfrac{1}{4}\right)+\left(z^2-z+\dfrac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)(luôn đúng \(\forall x+y+z=\dfrac{3}{2}\))

Bình luận (3)
H24
9 tháng 5 2018 lúc 19:33

mau giúp mik với các bạn ơi

Bình luận (0)

Các câu hỏi tương tự
AN
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết