Cho x, y, z là các số thực dương thỏa mãn \(\left\{{}\begin{matrix}x+z+yz=1\\y-3z+xz=1\end{matrix}\right.\)
Tìm GTNN của biểu thức T = x2 + y2
Cho các số x,y ϵ R thỏa mãn hệ bất phương trình sau \(\left\{{}\begin{matrix}x+y\ge3\\x\ge0\\y\ge0\\2x+y\le6\end{matrix}\right.\). Tìm giá trị nhỏ nhất và lớn nhất của biểu thức: F = 5x-6y+2021
1. Cho các số thực x, y, z thỏa mãn điều kiện \(\left\{{}\begin{matrix}x-y+z=3\\x^2+y^2+z^2=5\end{matrix}\right.\)
\(P=\dfrac{x+y-2}{z+2}\) đạt giá trị lớn nhất là bao nhiêu?
2. Cho \(f\left(x\right)=2021x^2+\dfrac{6y^2}{2021}-4xy-\dfrac{y}{2021}+x+\dfrac{m^2}{2021}\)
Tìm m để \(f\left(x\right)>0\forall x,y\)
3. Cho hệ bất phương trình \(\left\{{}\begin{matrix}\left|x+1\right|\le1\\\dfrac{x}{m}< 1\end{matrix}\right.\) (m ≠ 0 là tham số thực)
Tìm tất cả các giá trị của tham số m để hệ bpt có đúng 3 nghiệm nguyên
Cho ba số x,y,z không âm thỏa mãn x+y+z=3. Chứng minh rằng:
\(\left(x^3+y^3+z^3\right)\left(x^3y^3+y^3z^3+z^3x^3\right)\le36\left(xy+yz+xz\right)\)
Biểu thức L=y-x, với x và y thỏa mãn hệ bất pt \(\left\{{}\begin{matrix}2x+3y-6\le0\\x\ge0\\2x-3y-1\le0\end{matrix}\right.\), đạt Max tại a và đạt Min tại b. Tính a và b
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
1tìm m để hệ bất phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}2x-1\ge3\\x-m\le0\end{matrix}\right.\)
2hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\)có nghiệm khi ??
3 hệ bất phương trình có nghiệm khi \(\left\{{}\begin{matrix}x+m\le0\\x^2-x+4< x^2-1\end{matrix}\right.\)
4 tìm tất cả các giá trị của m đề với mọi giá trị của x thỏa mãn \(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\)
5 với giá trị nào của m thì hệ có nghiệm \(\left\{{}\begin{matrix}x^2+y^2=1\\x+y\sqrt{3}< m\end{matrix}\right.\)
6 với giá trị nào của m thì hệ có nghiệm duy nhất \(\left\{{}\begin{matrix}x^2+2x+a\le0\\x^2-4x-6a\le0\end{matrix}\right.\)
Tìm Min của biểu thức F=y-x trên miền xác định bởi hệ \(\left\{{}\begin{matrix}2x+y\le2\\x-y\le2\\5x+y\ge-4\end{matrix}\right.\)
Biểu thức F=y-x đạt Min với đk \(\left\{{}\begin{matrix}-2x+y\le-2\\x-2y\le2\\x+y\le5\\x\ge0\end{matrix}\right.\) tại điểm S(x;y) có tọa độ là