Violympic toán 9

DT

cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh 1/a^2+1/b^2+1/c^2≥a^2+b^2+c^2

 

NL
2 tháng 10 lúc 0:36

Ta có:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}\) (1)

Đồng thời: \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)

\(\Rightarrow abc\le\dfrac{3\left(ab+bc+ca\right)^2}{a+b+c}\) (2)

(1);(2) \(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\) (3)

Lại có:

\(\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\sqrt[3]{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}\)

\(\Rightarrow\left(a+b+c\right)^6\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

\(\Rightarrow\left(a+b+c\right)^4\left(a+b+c\right)^2\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

\(\Rightarrow81\left(a+b+c\right)^2\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

\(\Rightarrow3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

\(\Rightarrow\dfrac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\) (4)

(3);(4) \(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge a^2+b^2+c^2\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)