Bài 1: Phân thức đại số.

H24

cho các số nguyên dương a,b,c,d thỏa mãn a+b+x+d=4 chứng minh: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{cd}+\dfrac{1}{da}\ge a^2+b^2+c^2+d^2\)

H24
12 tháng 2 2019 lúc 16:01

Áp dụng BĐT Svacxơ:

\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{cd}+\dfrac{1}{da}\ge\dfrac{4}{ab+bc+cd+da}\)

Áp dụng BĐT Cô-si:

\(\dfrac{4}{ab+bc+cd+da}\ge\dfrac{4}{a^2+b^2+c^2+d^2}\)

Ta cần c/m: \(\dfrac{4}{a^2+b^2+c^2+d^2}\ge a^2+b^2+c^2+d^2\)

\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)^2\ge4\)

Áp dụng BĐT Svacxơ: \(\left(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}+\dfrac{d^2}{1}\right)^2\ge\dfrac{\left(a+b+c+d\right)^{2^2}}{16}\)

mà a+b+c+d=4 nên: \(\dfrac{\left(a+b+c+d\right)^4}{16}\ge\dfrac{64}{16}=4=VP\)

Vậy ta có đpcm.

Bình luận (0)
H24
12 tháng 2 2019 lúc 15:36

a+b+c+d=4 nha

Bình luận (0)

Các câu hỏi tương tự
QK
Xem chi tiết
TM
Xem chi tiết
CN
Xem chi tiết
HK
Xem chi tiết
BH
Xem chi tiết
TL
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
SG
Xem chi tiết