Bài 1: Sự đồng biến và nghịch biến của hàm số

KT

cho các số nguyên dương a,b .biết hàm số \(y=\dfrac{1}{3}\left(a-4\right)x^3+2bx^2+x+5\) đồng biến trên R . Hỏi giá trị nhỏ nhất của biểu thức S= 2a+3b là ?

A.16 B.19 C.13 D.26

H24
25 tháng 9 2017 lúc 22:02

\(y'=\left(a-4\right)x^2+4bx+1\)

Để hàm số đồng biến trên R thì

\(\left\{{}\begin{matrix}a-4>0\\4b^2-\left(a-4\right)\le0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a>4\\a-4\ge4b^2\end{matrix}\right.\)

ta thấy S=2a+3b nhỏ nhất khi a và b nhỏ nhất

ta thấy :\(a-4\ge4b^2\)

a và b sẽ mang giá trị nhỏ nhất khi \(a-4=4b^2\)

=>\(a=4b^2+4\)

vậy \(S=2\left(4b^2+4\right)+3b\)

vậy min S là : ...................

..............................

.................................

....................

\(-\infty\)

sao kì vậy ! may be lí luận sai chỗ nào đấy

Bình luận (1)