a) Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\)
\(\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{1}{c}\)
\(\Leftrightarrow ab=c\left(a+b\right)\)
Ta có : ab \(⋮\) ( a + b )
Nếu a + b là số nguyên tố thì a \(⋮\left(a+b\right)\) hoặc b \(⋮\) ( a + b )
\(\Rightarrow\) a > a + b hoặc b > a + b ( vì a , b \(\in\) N* ) ( Điều này là vô lí )
Như vậy a + b không thể là số nguyên tố
b) Ta có : (a + c ) ( b + c ) = ab + ac + bc + c2 = ab + ( a + b ) c + c2
= 2( a + b )c + c2 = c ( 2a + 2b + c )
\(\Rightarrow\left(a+c\right)\left(b+c\right)⋮c\) ( 1 )
Nếu a + c và b + c đồng thời là số nguyên tố
Mà a + c > c , b + c > c . Do đó : ( a + c ) ( b + c ) \(⋮̸\) c ( 2 )
( 1 ) và ( 2 ) mâu thuẫn với nhau
Như vậy a + c và b + c không đồng thời là số nguyên tố