Ôn tập cuối năm phần số học

HT

Cho a,b,c>0. Chứng minh rằng:\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

H24
12 tháng 8 2017 lúc 9:11

BDT

\(x+\dfrac{1}{x}=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2\ge2\)

nhân PP vào là ra

\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3+2+2+2=9\)

Bình luận (0)
H24
12 tháng 8 2017 lúc 10:40

Theo BĐT Cauchy:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)
UK
13 tháng 8 2017 lúc 11:26

Áp dụng BĐT C-S, ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

\(\Rightarrow VT\ge9\)

Đẳng thức xảy ra khi a=b=c

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
KN
Xem chi tiết
HN
Xem chi tiết
NA
Xem chi tiết
AH
Xem chi tiết
QL
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
MP
Xem chi tiết