Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z\le\frac{3}{2}\). Tìm GTNN của biểu thức:
\(P=\frac{x\left(yz+1\right)^2}{z^2_{ }\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)
4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).
7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).
8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).
9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).
10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.
11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).
12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).
13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Mn làm giúp mk với. Mk đang cần gấp
1) Cho x,y,z là các số thực dương thỏa mãn x+y+z=1
Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{x^2\left(y+z\right)}{yz}+\frac{y^2\left(z+x\right)}{zx}+\frac{z^2\left(x+y\right)}{xy}\)
2)Cho x>y và x+y≤1 .Tìm Min của A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
1, Cho hai số dương x,y thỏa mãn x+y=1. Tính giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
2, Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\) . Cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
Cho x,y,z là các số thực dương thỏa mãn x+y-z+1=0.Tìm GTLN của biểu thức \(P=\frac{x^3y^3}{\left(x+yz\right)\left(y+xz\right)\left(z+xy\right)^2}\)
Cho hai số dương x,y thoả mãn \(x\left(x^3+y^3\right)+6xy\left(x+y-2\right)=\left(x+y\right)^2\left(xy+4\right)\)
Tìm giá trị nhỏ nhất của biểu thức \(T=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+1\right)\)
Với hai số dương x, y thỏa mãn x + y = 2. Tìm giá trị lớn nhất của biểu thức:
\(T=\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}}+\sqrt{1+\frac{1}{y^2}+\frac{1}{\left(y+1\right)^2}}+\frac{4}{\left(x+1\right)\left(y+1\right)}\)
1.Cho ba số dương a+b+c=1.Chứng minh rằng:
\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
2.Cho x,y,z là các số thực dương và thỏa mãn xy+yz+zx=xyz.Chứng minh rằng:
\(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3+\left(1+y\right)\left(1+z\right)}+\frac{zx}{y^2+\left(1+z\right)\left(1+x\right)}\)\(\ge\)\(\frac{1}{16}\)
3.Cho hai số thực dương a,b và thỏa mãn 2a +3b \(\le4\).Tìm giá trị nhỏ nhất của biểu thức:
Q=\(\frac{2002}{a}+\frac{2017}{b}+2996a-5501b\)
4.Gỉai phương trình : \(\left(x^2-4\right)^3=\left(\sqrt[3]{\left(x^2+4\right)^2}+4\right)^2\)