Violympic toán 8

TA

Cho các số a,b,x, y sao cho ab#0 và a khác -b thỏa mãn

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) ; x2 +y2=1

Chứng minh : \(\frac{x^{2002}}{a^{1001}}+\frac{y^{2002}}{b^{1001}}=\frac{2}{\left(a+b\right)^{1001}}\)

MS
5 tháng 3 2019 lúc 22:04

\(\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+y^4+2x^2y^2}{a+b}\Leftrightarrow\left(a+b\right)\left(x^4b+y^4a\right)=ab\left(x^4+y^4+2x^2y^2\right)\)

\(\Leftrightarrow x^4ab+y^4a^2+x^4b^2+y^4ab=x^4ab+y^4ab+2x^2y^2ab\)

\(\Leftrightarrow y^4a^2+x^4b^2=2x^2y^2ab\Leftrightarrow\left(x^2b-y^2a\right)^2=0\Leftrightarrow\frac{x^2}{a}=\frac{y^2}{b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1001}=\left(\frac{y^2}{b}\right)^{1001}\Leftrightarrow\frac{x^{2002}}{a^{1001}}=\frac{y^{2002}}{b^{2011}}\)

Mà: \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\Leftrightarrow\left(\frac{x^2}{a}\right)^{1001}=\frac{1}{\left(a+b\right)^{1001}}\)

\(\Rightarrow\frac{x^{2002}}{a^{1001}}+\frac{y^{2002}}{b^{1001}}=\frac{2}{\left(a+b\right)^{1001}}\left(đpcm\right)\)

Bình luận (0)
NL
5 tháng 3 2019 lúc 22:10

\(x^2+y^2=1\Rightarrow y^2=1-x^2\)

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{b.x^4+a.y^4}{ab}=\frac{1}{a+b}\)

\(\Leftrightarrow bx^4+ay^4=\frac{ab}{a+b}\Leftrightarrow bx^4+a\left(1-x^2\right)^2-\frac{ab}{a+b}=0\)

\(\Leftrightarrow bx^4+a\left(x^4-2x^2+1\right)-\frac{ab}{a+b}=0\)

\(\Leftrightarrow\left(a+b\right)x^4-2ax^2+a-\frac{ab}{a+b}=0\)

\(\Leftrightarrow\left(a+b\right)x^4-2ax^2+\frac{a^2}{a+b}=0\Leftrightarrow\left(a+b\right)\left[x^4-2.x.\frac{a}{a+b}+\left(\frac{a}{a+b}\right)^2\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(x^2-\frac{a}{a+b}\right)=0\Rightarrow x^2=\frac{a}{a+b}\) (do \(a+b\ne0\))

\(\Rightarrow y^2=1-x^2=\frac{b}{a+b}\)

\(\Rightarrow\) \(\frac{x^2}{a}=\frac{a}{a\left(a+b\right)}=\frac{1}{a+b}\) ; \(\frac{y^2}{b}=\frac{b}{b\left(a+b\right)}=\frac{1}{a+b}\)

Thay vào bài toán:

\(\frac{x^{2002}}{a^{1001}}+\frac{y^{2002}}{b^{1001}}=\left(\frac{x^2}{a}\right)^{1001}+\left(\frac{y^2}{b}\right)^{1001}=\left(\frac{1}{a+b}\right)^{1001}+\left(\frac{1}{a+b}\right)^{1001}=\frac{2}{\left(a+b\right)^{1001}}\)

Bình luận (0)
NT
5 tháng 3 2019 lúc 22:21

x2+y2=1y2=1x2

x4a+y4b=1a+bb.x4+a.y4ab=1a+b

bx4+ay4=aba+bbx4+a(1x2)2aba+b=0

bx4+a(x42x2+1)aba+b=0

(a+b)x42ax2+aaba+b=0

(a+b)x42ax2+a2a+b=0(a+b)[x42.x.aa+b+(aa+b)2]=0

(a+b)(x2aa+b)=0x2=aa+b (do a+b0)

y2=1x2=ba+b

x2a=aa(a+b)=1a+b ; y2b=bb(a+b)=1a+b

Thay

Bình luận (0)
Y
5 tháng 3 2019 lúc 22:28

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}=\frac{x^2+y^2}{a+b}\)

\(\Rightarrow\frac{x^4b+y^4a}{ab}=\frac{x^2+y^2}{a+b}\)

\(\Rightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^2+y^2\right)ab\)

\(\Rightarrow x^4ab+y^4ab+x^4b^2+y^4a^2=x^2ab+y^2ab\)

\(\Rightarrow x^4b^2+y^4a^2=x^2ab-x^4ab+y^2ab-y^4ab\)

\(\Rightarrow x^4b^2+y^4a^2-x^2ab\left(1-x^2\right)-y^2ab\left(1-y^2\right)=0\)

\(\Rightarrow\left(x^2b\right)^2+\left(y^2a\right)^2-2x^2y^2ab=0\) ( do \(x^2+y^2=1\) )

\(\Rightarrow\left(x^2b-y^2a\right)=0\)

\(\Rightarrow x^2b=y^2a\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2002}}{a^{1001}}=\frac{y^{2002}}{b^{1001}}=\frac{1}{\left(a+b\right)^{1001}}\)

\(\Rightarrow\frac{x^{2002}}{a^{1001}}+\frac{y^{2002}}{b^{1001}}=\frac{2}{\left(a+b\right)^{1001}}\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
QN
Xem chi tiết
MN
Xem chi tiết
TP
Xem chi tiết
LS
Xem chi tiết
NA
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết