\(Q=\left[\dfrac{2x-x^2}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right]\cdot\left[\dfrac{2+x-x^2}{x^2}\right]\)
\(=\dfrac{-x\left(x-2\right)^2-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x^2-x-2\right)}{x^2}\)
\(=\dfrac{-x\left(x^2-4x+4\right)-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}\)
\(=\dfrac{-x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}=\dfrac{x+1}{x}\)
b: Để Q là số nguyên thì x+1 chia hết cho x
=>1 chia hết cho x
hay \(x\in\left\{1;-1\right\}\)