Chương I - Căn bậc hai. Căn bậc ba

HC

Cho biểu thức: \(P=\left(\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{a+\sqrt{a}}{a-1}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)\) với a > 0, a \(\ne\)1

1. Rút gọn P

2. Tìm tất cả các giá trị nguyên của a để biểu thức P là một số nguyên

H24
3 tháng 7 2019 lúc 12:01

Mk có làm tắt vài chỗ (vì lười .-.) , có gì ko hiểu cmt cho mk biết nha

1.

\(P=\left(\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{a+\sqrt{a}}{a-1}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)\\ =\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\frac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ =\left(\frac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}\right):\left(\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ \frac{1}{\sqrt{a}-1}\cdot\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\\ =\frac{\sqrt{a}+1}{2\sqrt{a}}\)

2. Mk giải chưa ra, sorry nha :<)

Bình luận (0)

Các câu hỏi tương tự
ET
Xem chi tiết
ET
Xem chi tiết
QM
Xem chi tiết
NM
Xem chi tiết
MI
Xem chi tiết
LN
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết