Chương I - Căn bậc hai. Căn bậc ba

LN

cho biểu thức A= \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a > 0

a) rút gọn biểu thức

b) tính giá trị nhỏ nhất của A.

cho biểu thức P= \(\left(\frac{a\sqrt{a}+1}{a-1}-\frac{a-1}{\sqrt{a}-1}\right):\left(\sqrt{a}-\frac{\sqrt{a}}{\sqrt{a}-1}\right)\) với a > 0; a khác 1

a) rút gọn biểu thức

b) tính giá trị của P khi a = 3-2\(\sqrt{2}\)

HP
20 tháng 10 2020 lúc 2:03

2.

a, \(P=\left(\frac{a\sqrt{a}+1}{a-1}-\frac{a-1}{\sqrt{a}-1}\right):\left(\sqrt{a}-\frac{\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left[\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{a-1}{\sqrt{a}-1}\right]:\frac{a-\sqrt{a}-\sqrt{a}}{\sqrt{a}-1}\)

\(=\left[\frac{a-\sqrt{a}+1}{\sqrt{a}-1}-\frac{a-1}{\sqrt{a}-1}\right]:\frac{a-2\sqrt{a}}{\sqrt{a}-1}\)

\(=\frac{2-\sqrt{a}}{\sqrt{a}-1}.\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-2\right)}=-\frac{1}{\sqrt{a}}\)

b, \(a=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\Rightarrow\sqrt{a}=\sqrt{2}-1\)

Khi đó \(P=-\frac{1}{\sqrt{a}}=-\frac{1}{\sqrt{2}-1}=-\sqrt{2}-1\)

Bình luận (0)
 Khách vãng lai đã xóa
HP
20 tháng 10 2020 lúc 1:21

1.

a, \(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)

\(=a-\sqrt{a}\)

b, \(A=a-\sqrt{a}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

\(\Rightarrow MinA=-\frac{1}{4}\Leftrightarrow x=\frac{1}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LL
Xem chi tiết
ET
Xem chi tiết
LL
Xem chi tiết
LN
Xem chi tiết
LY
Xem chi tiết
HC
Xem chi tiết
SB
Xem chi tiết
QM
Xem chi tiết
MS
Xem chi tiết