Chương I - Căn bậc hai. Căn bậc ba

ET

1,Cho biểu thức P =\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

a, Rút gọn P

b,Tìm a để P< 7-4\(\sqrt{3}\)

2,Cho biểu thức A=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a>0 và a\(\ne\)1

a, Rút gọn biểu thức A

b,So sánh giá trị của A với 1

AH
2 tháng 4 2020 lúc 20:37

Bài 1:

ĐK: $a\geq 0; a\neq 1$

a)

\(P=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)

\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)\)

\(=(\sqrt{a}+1)^2(\sqrt{a}-1)^2=(a-1)^2\)

b) \(P< 7-4\sqrt{3}\)

\(\Leftrightarrow (a-1)^2< (2-\sqrt{3})^2\)

\(\Leftrightarrow \sqrt{3}-2< a-1< 2-\sqrt{3}\)

\(\Leftrightarrow \sqrt{3}-1< a< 3-\sqrt{3}\)

Vậy $\sqrt{3}-1< a< 3-\sqrt{3}$ và $a\neq 1$

Bình luận (0)
 Khách vãng lai đã xóa
AH
2 tháng 4 2020 lúc 20:41

Bài 2:

a)

\(A=\frac{2}{a-\sqrt{a}}.\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}=\frac{2(\sqrt{a}-1)^2}{\sqrt{a}(\sqrt{a}-1)(\sqrt{a}+1)}=\frac{2(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}+1)}\)

b)

Xét hiệu \(A-1=\frac{2\sqrt{a}-2-a-\sqrt{a}}{\sqrt{a}(\sqrt{a}+1)}=-\frac{a-\sqrt{a}+2}{\sqrt{a}(\sqrt{a}+1)}\)

Thấy rằng: \(a-\sqrt{a}+2=(\sqrt{a}-\frac{1}{2})^2+\frac{7}{4}>0; \sqrt{a}(\sqrt{a}+1)>0 \) với mọi $a>0; a\neq 1$ nên:

\(A-1=-\frac{a-\sqrt{a}+2}{\sqrt{a}(\sqrt{a}+1)}<0\Rightarrow A< 1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
ET
Xem chi tiết
HC
Xem chi tiết
LN
Xem chi tiết
ML
Xem chi tiết
NM
Xem chi tiết
QM
Xem chi tiết
HL
Xem chi tiết
CC
Xem chi tiết
LY
Xem chi tiết