Violympic toán 9

HN

cho biểu thức

\(P=\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\)

a) rút gọn biểu thức P

b)tính giá trị của biểu thức P với x=\(\dfrac{2}{2+\sqrt{3}}\)

NM
5 tháng 11 2018 lúc 21:54

\(\dfrac{\left(\sqrt{X}+\sqrt{Y}\right)\left(1+\sqrt{XY}\right)+\left(\sqrt{X}-\sqrt{Y}\right)\left(1-\sqrt{XY}\right)}{1-XY}\cdot\dfrac{1-XY}{1-XY+\sqrt{X}+\sqrt{Y}+2\sqrt{XY}}=\dfrac{\sqrt{X}+X\sqrt{Y}+\sqrt{Y}+Y\sqrt{X}+\sqrt{X}-X\sqrt{Y}-\sqrt{Y}+Y\sqrt{X}}{1-XY}\cdot\dfrac{1-XY}{XY+X+Y+1}=\dfrac{2\sqrt{X}\left(1+Y\right)}{\left(1+Y\right)\left(X+1\right)}=\dfrac{2\sqrt{X}}{X+1}\)

Bình luận (0)
NT
17 tháng 11 2022 lúc 21:30

b: Thay \(x=\dfrac{2}{2+\sqrt{3}}=2\left(2-\sqrt{3}\right)=4-2\sqrt{3}\) vào P, ta được:

\(P=\dfrac{2\left(\sqrt{3}-1\right)}{4-2\sqrt{3}+1}=\dfrac{2\sqrt{3}-2}{5-2\sqrt{3}}=\dfrac{6\sqrt{3}+2}{13}\)

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
CA
Xem chi tiết
HC
Xem chi tiết
TT
Xem chi tiết