Ôn thi vào 10

NT

Cho biểu thức \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x}{x-2\sqrt{x}+1}\) ( \(x>0;x\ne1\) )

1. Rút gọn biểu thức

2. Tìm giá trị của \(x\) để \(P>\dfrac{1}{2}\)

Giúp câu 2 với ạ

AH
23 tháng 7 2021 lúc 11:00

Lời giải:
1. \(P=\left[\frac{1}{\sqrt{x}(\sqrt{x}-1)}+\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}\right]:\frac{x}{(\sqrt{x}-1)^2}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)^2}{x}=\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{x\sqrt{x}}=\frac{x-1}{x\sqrt{x}}\)

2.

\(P>\frac{1}{2}\Leftrightarrow \frac{x-1}{x\sqrt{x}}> \frac{1}{2}\)

\(\Leftrightarrow \frac{2x-2-x\sqrt{x}}{2x\sqrt{x}}>0\)

\(\Leftrightarrow 2x-2-x\sqrt{x}>0\)

\(\Leftrightarrow x\sqrt{x}+2< 2x\) 

Điều này vô lý do theo BĐT Cô-si thì:\(x\sqrt{x}+2=\frac{x\sqrt{x}}{2}+\frac{x\sqrt{x}}{2}+2\geq 3\sqrt[3]{\frac{x^3}{2}}>\frac{3x}{\sqrt[3]{2}}> 2x\)

Vậy không tồn tại $x$ thỏa mãn.

Bình luận (0)
NT
23 tháng 7 2021 lúc 12:03

1) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{x}\)

\(=\dfrac{x-1}{x\sqrt{x}}\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
MP
Xem chi tiết