Ôn thi vào 10

MP

cho biểu thức B=\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}-1}{x-1}\right).\dfrac{\sqrt{x}-1}{\sqrt{x}}\) với x>0 , x\(\ne1\)

a, cmr B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b, tính giá trị biểu thức B khi x=-\(\sqrt{12}+4\)

c, tìm x để B \(\left(\sqrt{x}+1\right)\ge2x-2\sqrt{x}-3\)

H24
11 tháng 5 2021 lúc 8:42

đề hơi sai, sửa này mới đúng nhaa

a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

B =\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{x-1}\right)\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

   = \(\dfrac{x+2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

    =  \(\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

    = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) (đpcm)

b, x = \(4-\sqrt{12}\) = \(\left(\sqrt{3}-1\right)^2\) => \(\sqrt{x}=\sqrt{3}-1\) (1)

Thay (1) vào B, ta được : \(B=\dfrac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-2}{\sqrt{3}}\)

c, Để \(\sqrt{x}+1\ge2x-2\sqrt{x}-3\)

<=> \(2x-3\sqrt{x}-4\le0\)

xem lại đề hoặc nếu đề chuẩn rồi í thì c pt thành nhân tử rồi lấy trong khoảng (có lấy dấu bằng) =(( chứ đà này chuẩn bị rối

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
AQ
Xem chi tiết
AQ
Xem chi tiết
CQ
Xem chi tiết
NT
Xem chi tiết