a: ĐKXĐ: x>0; x<>1
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\dfrac{1}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P<0 thì \(\sqrt{x}-1< 0\)
=>0<x<1
c: Để P là số nguyên thì \(\sqrt{x}-1+2⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{1;-1;2\right\}\)
hay \(x\in\left\{4;0;9\right\}\)