Violympic toán 9

NN

Cho biểu thức \(P=\frac{x-2\sqrt{x}}{x\sqrt{x-1}}+\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\frac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\)Tìm tất cả các giá trị của x sao cho giaá trị của P là một số nguyên

HV
25 tháng 10 2020 lúc 13:28

điều kiện : \(x>0\), \(x\) ≠ 1.

rút gọn biểu thức ta được P = \(\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

ta có : Px + (P \(-\)1)\(\sqrt{x}\)+P\(-\)2 = 0, ta coi đây là ptr bậc hai của \(\sqrt{x}\).

nếu P = 0⇒\(-\sqrt{x}-2\) = 0 vô lí, suy ra P ≠ 0 nên để tồn tại x thì ptr trên có \(\left(P-1\right)^2-4P\left(P-2\right)\) ≥ 0

\(-3P^2+6P+1\) ≥ 0

\(P^2-2P+1\)\(\frac{4}{3}\)

\(\left(P-1\right)^2\)\(\frac{4}{3}\)

do P nguyên nên \(\left(P-1\right)^2\) bằng 0 hoặc 1

+) nếu \(\left(P-1\right)^2\) = 0 ⇔ P = 1 ⇔ x = 1 ( không thỏa mãn )

+) nếu \(\left(P-1\right)^2\) = 1 ⇔ \(\begin{matrix}\text{[}&P=2\\\text{[}&P=0\end{matrix}\) ⇒ P = 2

\(2x+\sqrt{x}=0\) ⇔ x = 0 ( ko thỏa mãn )

vậy không có gtri nào của x thỏa mãn.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
T8
Xem chi tiết
HP
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
PL
Xem chi tiết
NG
Xem chi tiết
HA
Xem chi tiết
PN
Xem chi tiết