Ôn tập cuối năm phần số học

LM

Cho biểu thức:
P= \(\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right)\) :\(\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
a)Rút gọn
b)Tính giá trị của P tại x =\(\dfrac{1}{3}\)

c)Tính các số nguyên dương x>4 để P ∈ Z
-GIÚP MÌNH VỚI Ạ-

AT
10 tháng 8 2018 lúc 20:54

a/ đkxđ: x \(\ne\pm\)2; x≠3

\(P=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right):\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)

\(=\left(\dfrac{\left(2+x\right)^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}+\dfrac{4x^2}{x^2-4}\right):\dfrac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)

\(=\dfrac{x^2+4x+4-x^2+4x-4+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{x-3}\)

\(=\dfrac{8x+4x^2}{2+x}\cdot\dfrac{1}{x-3}=\dfrac{4x\left(2+x\right)}{2+x}\cdot\dfrac{1}{x-3}=\dfrac{4x}{x-3}\)

b/ x = \(\dfrac{1}{3}\Leftrightarrow P=\dfrac{4\cdot\dfrac{1}{3}}{\dfrac{1}{3}-3}=\dfrac{4}{3}:\left(-\dfrac{8}{3}\right)=\dfrac{4}{3}\cdot\left(-\dfrac{3}{8}\right)=-\dfrac{4}{8}=-\dfrac{1}{2}\)

c/ \(P\in Z\Rightarrow\dfrac{4x}{x-3}\in Z\)

Ta có: \(\dfrac{4x}{x-3}=\dfrac{4x-12+12}{x-3}=\dfrac{4\left(x-3\right)}{x-3}+\dfrac{12}{x-3}=4+\dfrac{12}{x-3}\)

=> \(x-3\inƯ\left(12\right)\) thì P ∈ Z

=> \(x-3=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

\(\Leftrightarrow x=\left\{-9;-3;-1;0;1;2;4;5;6;7;9;15\right\}\)

mà x>4

=> x = {5;6;7;9;15}

Bình luận (0)
HK
10 tháng 8 2018 lúc 21:12

a, Ta có:

\(P=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right):\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)

\(=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{4-x^2}\right):\left[\dfrac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\right]\)

\(=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{\left(2-x\right)\left(2+x\right)}\right):\dfrac{x-3}{2-x}\)

\(=\dfrac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)

\(=\dfrac{4+4x+x^2-\left(4-4x+x^2\right)+4x^2}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)

\(=\dfrac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)

\(=\dfrac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)

\(=\dfrac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)

\(=\dfrac{4x}{x-3}\)

Bình luận (1)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
TP
Xem chi tiết
MN
Xem chi tiết
SN
Xem chi tiết
2S
Xem chi tiết
2S
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết