Chương I - Hệ thức lượng trong tam giác vuông

H24

cho biểu thức B = ( căn x - 2 phần x-1 - căn x + 2 phần x+2 căn x +1) . (1-x)phần 2

a/ tìm điều kiện xác đinh và rút gọn B

b/ chứng tỏ rằng nếu 0<x<1 thì B>0

c/tính giá trị lớn nhất của B

 

H9
21 tháng 8 2023 lúc 14:33

\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\) 

a) ĐK: \(x\ne1,x\ge0\)

\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)

\(B=\left[\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(B=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(B=\left[\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(B=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2}{2}\)

\(B=-\sqrt{x}\left(\sqrt{x}-1\right)\) 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LG
Xem chi tiết
NA
Xem chi tiết
VP
Xem chi tiết
LG
Xem chi tiết
TH
Xem chi tiết
HT
Xem chi tiết
NY
Xem chi tiết
NA
Xem chi tiết