Ôn tập cuối năm phần số học

QL

Cho biểu thức: \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\).

a) Tìm x để giá trị của A được xác định. Rút gọn biểu thức A.

b) Tìm giá trị nguyên của x để A nhận giá trị nguyên.

DD
20 tháng 4 2018 lúc 18:33

Câu a :

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)

\(A=\left(\dfrac{x^2-2x}{2x^2+8x}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)+2.2x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(=\dfrac{x}{2\left(x-2\right)}\times\dfrac{\left(x+1\right)\left(x-2\right)}{x^2}\)

\(=\dfrac{x+1}{2x}\)

Câu b : Dễ rồi

Bình luận (0)

Các câu hỏi tương tự
2S
Xem chi tiết
2S
Xem chi tiết
DT
Xem chi tiết
SN
Xem chi tiết
DT
Xem chi tiết
TP
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
QL
Xem chi tiết