Violympic toán 9

TT

Cho biểu thức \(A=\dfrac{x^2+mx+n}{x^2+2x+4}\). Tìm các giá trị của m, n để biểu thức A có giá trị nhỏ nhất bằng \(\dfrac{1}{3}\)và giá trị lớn nhất bằng 3

PA
25 tháng 2 2018 lúc 15:48

\(A=\dfrac{x^2+mx+n}{x^2+2x+4}\)

\(\Leftrightarrow Ax^2+2Ax+4A=x^2+mx+n\)

\(\Leftrightarrow\left(A-1\right)x^2+\left(2A-m\right)x+\left(4A-n\right)=0\left(1\right)\)

A có cực trị khi (1) có nghiệm

\(\Leftrightarrow\Delta=\left(4A^2-4Am+m^2\right)-4\left[4A^2-A\left(n+4\right)+n\right]\ge0\)

\(\Leftrightarrow-12A^2-4A\left(m-n-4\right)+m^2-4n\ge0\) (1)

Mặt khác, theo gt, ta có: \(\left\{{}\begin{matrix}A\ge\dfrac{1}{3}\\A\le3\end{matrix}\right.\)

\(\Rightarrow\left(3A-1\right)\left(3-A\right)\ge0\)

\(\Leftrightarrow-3A^2+10A-3\ge0\)

\(\Leftrightarrow-12A^2+40A-12\ge0\) (2)

Từ (1) và (2) suy ra \(\left\{{}\begin{matrix}m-n-4=-10\\m^2-4n=-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+6=n\\m^2-4\left(m+6\right)=-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n=m+6\\\left(m-6\right)\left(m+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}n=12\\n=4\end{matrix}\right.\\\left[{}\begin{matrix}m=6\\m=-2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(m;n\right)=\left(6;12\right);\left(-2;4\right)\)

Bình luận (0)

Các câu hỏi tương tự
CL
Xem chi tiết
HC
Xem chi tiết
HH
Xem chi tiết
BB
Xem chi tiết
VB
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
AP
Xem chi tiết