Violympic toán 9

MT

Cho biểu thức:

\(A=[(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}})\times\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}]\div\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

a) Rút gọn A

b) Biết xy = 16. Tính giá trị của x; y để A có giá trị nhỏ nhất, tìm giá trị đó.

MỌI NGƯỜI LÀM ƠN GIÚP MÌNH NHA....... :( HUHU

PQ
5 tháng 12 2018 lúc 18:52

ĐKXĐ : \(x,y>0\)

a) \(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right):\dfrac{x\sqrt{x}+y\sqrt{x}+x\sqrt{y}+y\sqrt{y}}{x\sqrt{xy}+y\sqrt{xy}}\)

\(A=\left(\dfrac{2}{\sqrt{xy}}+\dfrac{x+y}{xy}\right):\dfrac{\sqrt{x}\left(x+y\right)+\sqrt{y}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}\)

\(A=\dfrac{2\sqrt{xy}+x+y}{xy}.\dfrac{\sqrt{xy}\left(x+y\right)}{\sqrt{x}\left(x+y\right)+\sqrt{y}\left(x+y\right)}\)

\(A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{xy}}.\dfrac{x+y}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(A=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

b) \(A=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\dfrac{2\sqrt[4]{xy}}{\sqrt{xy}}=\dfrac{2\sqrt[4]{16}}{\sqrt{16}}=1\) ( Cosi )

Vậy GTNN của A là \(1\) khi \(x=y=4\)

Chúc bạn học tốt ~

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
TL
Xem chi tiết
HN
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
SN
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết