Ôn tập chương II

NP

Tìm tập xác định của các hàm số sau :

1 ) \(y=\dfrac{3x-2}{x^2-4x+3}\)

2 ) \(y=2\sqrt{5-4x}\)

3 ) y = \(\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)

4 ) \(y=\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)

5 ) \(y=\dfrac{-3x}{x+2}\)

6) \(y=\sqrt{-2x-3}\)

7 ) \(y=\dfrac{3-x}{\sqrt{x-4}}\)

8 ) \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)

9 ) \(y=\sqrt{2x+1}+\sqrt{4-3x}\)

HELP ME !!!!!!

HN
9 tháng 12 2018 lúc 21:42

5. \(y=\dfrac{-3x}{x+2}\)

xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)

vậy D= (\(-\infty;+\infty\))\{-2}

6. \(y=\sqrt{-2x-3}\)

xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)

vậy D= (\(-\infty;\dfrac{-3}{2}\)]

7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)

xác định khi: x-4 >0 <=> x>4

vậy D= (\(4;+\infty\))

8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)

xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)

vậy D= (\(-\infty;5\))\ {3}

9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)

xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)

vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]

Bình luận (0)
HN
9 tháng 12 2018 lúc 10:58

1. \(y=\dfrac{3x-2}{x^2-4x+3}\)

xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)

vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)

2.\(y=2\sqrt{5-4x}\)

xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)

vậy D= (\(-\infty;\dfrac{5}{4}\)]

3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)

xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)

vậy D= (\(-3;\dfrac{5}{2}\)]

4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)

xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)

Vậy D= [\(-2;9\)]\{2}

Bình luận (1)
VT
14 tháng 12 2018 lúc 14:04

Cũng như các dạng toán về hàm số lớp 10 khác, để tìm tập xác định một cách chính xác và nhanh chóng, ta cần biết một số dạng đặc trưng thường gặp trong các đề thi. Các dạng hàm số dưới đây có những dạng khá cơ bản, tuy nhiên một số cũng khá phức tạp, việc ghi nhớ cách làm sẽ giúp giải quyết bài toán một cách gọn gàng hơn.

Phương pháp tìm tập xác định của hàm số hay nhất tìm tập xác định của hàm số lớp 10

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NA
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
KC
Xem chi tiết
NA
Xem chi tiết
KR
Xem chi tiết