\(A+1=\frac{x+2}{x^2+2x+2}+1=\frac{x^2+3x+4}{x^2+2x+2}=\frac{\left(x+\frac{3}{2}\right)^2+\frac{7}{4}}{\left(x+1\right)^2+1}>0\)
\(\Rightarrow A+1>0\Rightarrow A>-1\)
\(A-2=\frac{x+2}{x^2+2x+2}-2=\frac{-2x^2-3x-2}{x^2+2x+2}=\frac{-2\left(x+\frac{3}{4}\right)^2-\frac{7}{8}}{\left(x+1\right)^2+1}< 0\)
\(\Rightarrow A-2< 0\Rightarrow A< 2\)
\(\Rightarrow-1< A< 2\) mà A nguyên \(\Rightarrow\left[{}\begin{matrix}A=0\\A=1\end{matrix}\right.\)
- Với \(A=0\Rightarrow\frac{x+2}{x^2+2x+2}=0\Leftrightarrow x+2=0\Rightarrow x=-2\)
- Với \(A=1\Rightarrow\frac{x+2}{x^2+2x+2}=1\Leftrightarrow x+2=x^2+2x+2\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy \(x=\left\{-2;-1;0\right\}\)