Cho biểu thức H = \(\left(\dfrac{a-3\sqrt{a}}{a-2\sqrt{a}-3}-\dfrac{2a}{a-1}\right)\): \(\dfrac{1-\sqrt{a}}{a-2\sqrt{a}+1}\) với a \(\ge\) 0, a \(\ne\) 1, a \(\ne\) 9
a) Rút gọn biểu thức H
b) Tìm a khi H = 2023
Bài 3:Cho biểu thức B=\(\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\).\(\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)(với a>0 và a khác 1)
a)rút gọn B
b)Đặt C=B.(\(a-\sqrt{a}+1\)).So sánh C và 1
cho biểu thức A= \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a > 0
a) rút gọn biểu thức
b) tính giá trị nhỏ nhất của A.
cho biểu thức P= \(\left(\frac{a\sqrt{a}+1}{a-1}-\frac{a-1}{\sqrt{a}-1}\right):\left(\sqrt{a}-\frac{\sqrt{a}}{\sqrt{a}-1}\right)\) với a > 0; a khác 1
a) rút gọn biểu thức
b) tính giá trị của P khi a = 3-2\(\sqrt{2}\)
Cho biểu thức A = \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
B = \(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a > 0, a ≠ 1
a, Rút gọn biểu thức A và B
b, So sánh A và B
B = (sqrt(x + 1))/(sqrt(x) + 2) A = (sqrt(x) - 3)/(sqrt(x) + 2) + (sqrt(x))/(sqrt(x) - 2) - (6 + sqrt(x))/(x - 4) và với x>0, x ne4 a) Tính giá trị của biểu thức B tại x = 9 b) Rút gọn biểu thức A . c) Cho P = A/R So sánh P với 2.
Rút gọn các biểu thức
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0)
b) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0; a ≠ b)
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\) với a,b > 0
1,Cho biểu thức P =\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a, Rút gọn P
b,Tìm a để P< 7-4\(\sqrt{3}\)
2,Cho biểu thức A=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a>0 và a\(\ne\)1
a, Rút gọn biểu thức A
b,So sánh giá trị của A với 1
Rút gọn biểu thức
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0; a ≠ b)
b) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)vớia,b>0\)
Cho biểu thức: \(P=1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a) Rút gọn P
b) Cho \(P=\frac{\sqrt{6}}{1+\sqrt{6}}\). Tìm giá trị của a. Chứng minh rằng P > \(\frac{2}{3}\)