Để A xác định <=> x-1 ; x2-1 ; (x-1)2 ≠ 0
=> x≠ 1 và x≠ -1
Vậy đê A xác định <=>x≠ 1 và x≠ -1
b,A= \(\frac{1}{x-1}\)+ \(\frac{4}{x^2+1}\)- \(\frac{2}{\left(x-1\right)^2}\)
= \(\frac{1.\left(x-1\right).\left(x+1\right)}{\left(x-1\right)^2.\left(x+1\right)}\)+ \(\frac{4.\left(x-1\right)}{\left(x-1\right).\left(x+1\right).\left(x-1\right)}\)-\(\frac{2.\left(x+1\right)}{\left(x-1\right)^2.\left(x+1\right)}\)
=\(\frac{x^2-1}{\left(x-1\right)^2.\left(x+1\right)}\)+\(\frac{4x-4}{\left(x-1\right)^2.\left(x+1\right)}\)+\(\frac{-2x-2}{\left(x-1\right)^2.\left(x+1\right)}\)
=\(\frac{x^2-1+4x-4-2x-2}{\left(x-1\right)^2.\left(x+1\right)}\)
=\(\frac{x^2+2x-7}{\left(x-1\right)^2.\left(x+1\right)}\)
Cậu xem lại kiểm tra lại nhé