Cm biểu thức ko phụ thuộc x
\(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}\)
A= sin8x+\(2cos^2x\left(4x+\dfrac{\pi}{4}\right)\)
Cm đẳng thức
\(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=0\)
\(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{2}{sina}\)
\(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
\(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=-cos^2a.sin^2b\)
Chứng minh rằng:
\(\dfrac{sin^44a}{2cosa+cos3a+cos5a}=2sina.sin2a\)
Giúp với mình sắp thi rồi!!!!!
Rút gọn biểu thức:
a, A = \(\dfrac{4\sin^2\alpha}{1-\cos\dfrac{\alpha}{2}}\)
b, B = \(\dfrac{1+\cos\alpha-\sin\alpha}{1-\cos\alpha-\sin\alpha}\)
c, C = \(\dfrac{1+\sin\alpha-2\sin^2\left(45^o-\dfrac{\pi}{2}\right)}{4\cos\dfrac{\alpha}{2}}\)
Bài 1: Rút gọn:
A= \(\dfrac{sin2\alpha+sin\alpha}{1+cos2\alpha+cos2\alpha}\)
B= \(\dfrac{4sin^2\alpha}{1-cos^2\dfrac{\alpha}{2}}\)
C= \(\dfrac{1+cos\alpha-sin\alpha}{1-cos\alpha-sin\alpha}\)
Cho sin a = \(\dfrac{1}{\sqrt{3}}\) với 0 < a < \(\dfrac{\pi}{2}\) , khi đó giá trị \(\cos\left(a+\dfrac{\pi}{3}\right)\) bằng ?
Cho \(\alpha\) , \(\beta\in\left(0;\dfrac{\pi}{2}\right)\) và sin \(\alpha\) = \(\dfrac{1}{\sqrt{5}}\) ; Cos \(\alpha\) = \(\dfrac{1}{\sqrt{10}}\) . Tính Cos \(\left(\alpha+\beta\right)\)
Chứng minh rằng:
a) \(\dfrac{1+sin^2x}{1-sin^2x}=1+2tan^2x\)
b) \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{2}{sinx}\)
c) \(\dfrac{1-sinx}{cosx}=\dfrac{cosx}{1+sinx}\)
d) \(\left(1-cosx\right)\left(1+cot^2x\right)=\dfrac{1}{1+cosx}\)
e) \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=sinx.cosx\)
f) \(\dfrac{1+cosx}{1+cosx}-\dfrac{1-cosx}{1+cosx}=\dfrac{4cotx}{sinx}\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
b) \(B=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-sin^8x-cos^8x\)
c) \(C=\dfrac{sin^2x}{1+cotgx}+\dfrac{cos^2x}{1+tgx}+sinx.cosx\)
d) \(D=\dfrac{cotg^2a-cos^2x}{cotg^2x}+\dfrac{sinx.cosx}{cotgx}\)
e) \(E=3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
f) \(F=\dfrac{tg^2x}{sin^2x.cos^2x}-\left(1+tg^2x\right)^2\)
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Chứng minh các đẳng thứ sau:
\(1,sin^8x-cos^8x=-(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x) \)
2\(sin^2x×cos^4x=\dfrac{1}{16}+\dfrac{1}{32}cos2x-\dfrac{1}{16}cos4x-\dfrac{1}{32}cos6x\)