\(\text{Ta có: }\)\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Rightarrow ab+bc+ca=0\Rightarrow-ab=bc+ca\)
\(VT=\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{b^3c^3+a^3b^3+a^3c^3}{\left(abc\right)^3}\)
\(=\dfrac{\left(bc+ca\right)^3-3abc^2\left(bc+ca\right)+\left(ab\right)^3}{\left(abc\right)^3}\)
\(=\dfrac{\left(-ab\right)^3+3\left(abc\right)^2+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{\left[-\left(ab\right)^3+\left(ab\right)^3+3\left(abc\right)^2\right]}{\left(abc\right)^3}\)
\(=\dfrac{3\left(abc\right)^2}{\left(abc\right)^3}=\dfrac{3}{abc}=VP\)
Bạn tham khảo tại đây:
Câu hỏi của Hoàng Tuấn - Toán lớp 8 | Học trực tuyến