Violympic toán 9

CL

Cho ba số thực dương a,b,c . Chứng minh

\(\frac{2+6a+3b+6\sqrt{2bc}}{2a+b+2\sqrt{2bc}}\ge\frac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)

NT
6 tháng 6 2019 lúc 16:26

\(\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\ge16\)

Ap dung bdt amgm va bdt bunhiacpoxki taok:

\(VT=\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\)

\(=\left(\sqrt{2\left(b^2+\left(a+c\right)^2\right)}+3\right)\left(\frac{2}{2a+b+2\sqrt{2bc}}+3\right)\)

\(\ge\left(\sqrt{2\cdot\frac{\left(a+b+c\right)^2}{2}}+3\right)\left(\frac{2}{2a+b+b+2c}+3\right)\)

\(=\left(a+b+c+3\right)\left(\frac{1}{a+b+c}+3\right)\)

\(\ge\left(1+3\right)^2=16=VP\)

Bình luận (1)
CL
6 tháng 6 2019 lúc 11:50

dùng bất đẳng thức cô-si và bất đẳng thức bu-nhi-a-cop-xki

Bình luận (0)
NH
6 tháng 6 2019 lúc 21:24

VT=\(\frac{2}{2a+b+2\sqrt{2bc}}+3\)\(\ge\frac{2}{2a+2b+2c}+3\)=\(\frac{1}{a+b+c}+\frac{9}{3}\)

Áp dụng bđt cauchy-schwarzta được:

VT\(\ge\frac{\left(1+3\right)^2}{a+b+c+3}=\frac{6}{a+b+c+3}\)

ta cần chứng minh: a+b+c\(\le\sqrt{2b^2+2\left(a+c\right)^2}\)

Thật vậy ta có

\(2b^2+2\left(a+c\right)^2-\left(a+b+c\right)^2=b^2+a^2+c^2+2ac-2bc-2ab=\left(b-a-c\right)^2\ge0\)Suy ra a+b+c\(\le\sqrt{2b^2+2\left(a+c\right)^2}\)

vậy VT\(\ge VP\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
DD
Xem chi tiết
NH
Xem chi tiết
LV
Xem chi tiết
BB
Xem chi tiết
PM
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
VH
Xem chi tiết