Ôn tập phương trình bậc hai một ẩn

SK

Cho ba số a, b, c thỏa mãn điều kiện: a+b+c=0;

a2 + b2 + c2 = 14

Tính P = 1 + a4 + b4 + c4

HV
10 tháng 12 2017 lúc 13:35

Có:

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=2\left[a^2b^2+b^2c^2+a^2c^2+abc\left(a+b+c\right)\right]\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

\(\Rightarrow a^4+b^4+c^4+1=2\left(a^2b^2+b^2c^2+a^2c^2\right)+1\)

Có:

\(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Rightarrow4\left(ab+bc+ac\right)^2=196\)

\(\Rightarrow\left(ab+bc+ac\right)^2=49\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)

\(\Rightarrow a^4+b^4+c^4+1=2\left(a^2b^2+b^2c^2+a^2c^2\right)+1\)

\(\Rightarrow a^4+b^4+c^4+1=2.49+1\)

\(\Rightarrow a^4+b^4+c^4+1=99\)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
DN
Xem chi tiết
NH
Xem chi tiết
WO
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
GT
Xem chi tiết