Violympic toán 9

H24

Cho \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{a^2-\sqrt{a}}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)

Rút gọn A và chứng minh \(A\ge2\sqrt{2}\)

MP
24 tháng 8 2018 lúc 11:03

điều kiện xác định : \(a>0\)

ta có : \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{a^2-\sqrt{a}}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)

\(\Leftrightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(\sqrt{a}^3-1\right)}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)

\(\Leftrightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)\(\Leftrightarrow A=\sqrt{a}\left(\sqrt{a}+1\right)-\sqrt{a}\left(\sqrt{a}-1\right)+\dfrac{1}{\sqrt{a}}\)

\(\Leftrightarrow A=a+\sqrt{a}-a+\sqrt{a}+\dfrac{1}{\sqrt{a}}=2\sqrt{a}+\dfrac{1}{\sqrt{a}}\)

áp dụng bất đẳng thức cô si ta có : \(A=2\sqrt{a}+\dfrac{1}{\sqrt{a}}\ge2\sqrt{2}\Rightarrow\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
KG
Xem chi tiết
TL
Xem chi tiết
NL
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết