Ôn thi vào 10

SO

Cho \(A=\dfrac{2\sqrt{x}+4}{\sqrt{x}-3}\)\(B=\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\) \(\left(x\ge0;x\ne9\right)\). Biết \(C=\dfrac{B}{A}\). Tìm \(x\in Z\) để \(C< \dfrac{-1}{3}\).

 

NT
29 tháng 10 2021 lúc 21:21

\(C=\left(\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}+4}\)

\(=\dfrac{-3}{2\sqrt{x}+4}\)

Để \(C< -\dfrac{1}{3}\) thì \(\dfrac{-3}{2\sqrt{x}+4}+\dfrac{1}{3}< 0\)

\(\Leftrightarrow-9+2\sqrt{x}+4< 0\)

\(\Leftrightarrow\sqrt{x}< \dfrac{5}{2}\)

hay \(0\le x< \dfrac{25}{4}\)

 

Bình luận (0)

Các câu hỏi tương tự
SO
Xem chi tiết
SO
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
MP
Xem chi tiết