Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 8

VN

cho a,b\(\ge\)1 chứng minh\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{1}{1+ab}\)

AH
10 tháng 4 2018 lúc 22:50

Lời giải:

Đề bài phải sửa lại là \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\) em nhé.

Sử dụng pp biến đổi tương đương. Ta có:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow \frac{b^2+1+a^2+1}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)+2ab-a^2-b^2\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)

\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\)

BĐT trên luôn đúng vì \(a,b\geq 1\rightarrow ab-1\geq 0\) và \((a-b)^2\geq 0\) )

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b\) hoặc \(ab=1\)

Bình luận (1)

Các câu hỏi tương tự
PM
Xem chi tiết
DT
Xem chi tiết
DH
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
VC
Xem chi tiết
BB
Xem chi tiết
QD
Xem chi tiết
BB
Xem chi tiết