Violympic toán 8

QD

1. Cho a;b;c > 0. Tìm giá trị nhỏ nhất:

\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

2. a) Cho x > 0, y > 0. CMR: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{1}{x+y}\)

b) Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh:

\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

LF
14 tháng 9 2017 lúc 17:05

Khó quá. Đúng là Câu Hỏi Hay!!

a)Áp dụng BĐT AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân theo vế 2 BĐT trên có:

\(A\ge9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)

Khi \(a=b=c\)

Bài 2:

a)Sửa đề \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)

Khi \(x=y\)

b)Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:

\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{4}{2b}=\dfrac{2}{b}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c};\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\ge\dfrac{2}{a}\)

Cộng theo vế 3 BĐT trên ta có:

\(2VT\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2VP\Leftrightarrow VT\ge VP\)

Khi \(a=b=c\)

Bình luận (1)
NS
14 tháng 9 2017 lúc 17:26

Câu 1: Với \(a;b;c>0\), theo bất đẳng thức Cauchy:

\(a+b+c\ge3.\sqrt[3]{abc}\). Dấu "=" xảy ra khi \(a=b=c\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3.\sqrt[3]{\dfrac{1}{abc}}\). Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

Nhân theo vế ta được \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

\(\Rightarrow MinA=9\)

Dấu "=" xảy ra khi a = b = c

Bình luận (0)
NS
14 tháng 9 2017 lúc 17:34

Câu 2: a) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{1}{x+y}\)

\(\Leftrightarrow\dfrac{\left(x+y\right)^2-xy}{xy\left(x+y\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{xy\left(x+y\right)}\ge0\)

Xảy ra dấu đẳng thức khi x = y

b) Do a, b, c là độ dài các cạnh của một tam giác nên \(a>0,b>0,c>0,a+b>0,b+c-a>0,c+a-b>0\)

Áp dụng câu a, ta có

\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{1}{2b}=\dfrac{2}{b}\)

\(\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{4}{2a}=\dfrac{2}{a}\)

\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{2c}=\dfrac{2}{c}\)

Cộng theo từng vế của ba bất đẳng thức trên rồi suy ra bất đẳng thức phải chứng minh. Xảy ra dấu đẳng thức \(\Leftrightarrow a=b=c\Leftrightarrow\) Tam giác đã cho là tam giác đều.
Bình luận (0)
QD
14 tháng 9 2017 lúc 17:38

Những câu hỏi này không phải của mình đăng nhé.Mình nói r bn nào vào nick mình thì nói đi!

Bình luận (4)

Các câu hỏi tương tự
DT
Xem chi tiết
DC
Xem chi tiết
TD
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
CT
Xem chi tiết
LT
Xem chi tiết
HF
Xem chi tiết
BB
Xem chi tiết