Violympic toán 8

BB

Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}\ge\sqrt{ab}\). Áp dụng tìm GTNN của \(A=\dfrac{1}{x}+\dfrac{1}{y}\) biết x+y=1 và x, y dương

DT
23 tháng 1 2021 lúc 21:32

Có: A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{x+y}{xy}\) =\(\dfrac{1}{xy}\) ( do x+y=1)

     Áp dụng bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ,dâú bằng xảy ra khi a=b, ta có:

A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{1}{xy}\) ≥ \(\dfrac{2}{x+y}\) =\(\dfrac{2}{1}\) =2 ( x+y=1)

dấu bằng xảy ra khi x=y=0,5. 

c/m bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ⇔ a+b ≥ 2\(\sqrt{ab}\)

                                    ⇔(a+b)2 ≥ 4ab 

                                     ⇔a2 +b2 +2ab≥ 4ab

                                      ⇔(a-b)≥ 0 (luôn đúng)

   dấu bằng xảy ra khi a=b.

Bình luận (0)
H24
23 tháng 1 2021 lúc 21:33

\(\dfrac{a+b}{2}\ge\sqrt{ab}\left(\circledast\right)\\ \Leftrightarrow a+b\ge2\sqrt{ab}\\ \Leftrightarrow\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2=\left(a-b\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vậy BĐT (*) được chứng minh.

\(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{1}{xy}\)

__________________________________

 \(\dfrac{x+y}{2}\ge\sqrt{xy}\\ \Rightarrow\sqrt{xy}\le\dfrac{1}{2}\\ \Rightarrow xy\le\dfrac{1}{4}\\ \Rightarrow A=\dfrac{1}{xy}\ge\dfrac{1}{\dfrac{1}{4}}=4\)

Vậy GTNN của A = 4

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Bình luận (1)
NK
23 tháng 1 2021 lúc 21:36

\(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\)

Theo đề bài, ta có:

 \(\dfrac{x+y}{2}\ge\sqrt{xy}\\ \Leftrightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\\ \Leftrightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{1^2}{4}=\dfrac{1}{4}\\ \Leftrightarrow xy\le\dfrac{1}{4}\\ \Leftrightarrow A\le\dfrac{x+y}{xy}=\dfrac{1}{\dfrac{1}{4}}=4\)

Vậy \(A_{min}=4\Leftrightarrow x=y=\dfrac{1}{2}\)

Bình luận (1)
H24
23 tháng 1 2021 lúc 21:48

Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\)  \(\forall a,b\ge0\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)  (đpcm) \(\Rightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\)

\(A=\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{xy}}\)

Mặt khác: \(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\) 

\(\Rightarrow A\ge2\sqrt{4}=4\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

  Vậy \(Min_A=4\) khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
DF
Xem chi tiết
VC
Xem chi tiết
QD
Xem chi tiết
NN
Xem chi tiết